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COROLLARY

COROLLARY (Pytkeev)
Assume that µ ≥ ω and for every x ∈ X there is some κ ≥ µ s.t. x is a
Bκ-point. Then X is µ-resolvable.

PROOF. If τ is the topology of X , by Zorn’s lemma there is a maximal
topology ̺ ⊃ τ s.t. if B witnesses that (for some κ ≥ µ) x is a Bκ-point
w.r.t. τ then the same is true w.r.t. ̺.

Then 〈X , ̺〉 is Pytkeev: If Y ⊂ X is not ̺-open then, by maximality,
there is a Bκ-point (w.r.t. ̺) x ∈ Y and a witness B for this s.t.
B \ Y 6= ∅ for all B ∈ B. So, there is Z ∈ [X \ Y ]≤κ with x ∈ Z

̺
.

Thus 〈X , ̺〉 is maximally resolvable, while ∆(X , ̺) ≥ µ, by definition.
Consequently, X is µ-resolvable.
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Malychin’s problem

PROBLEM. (Malychin, 1995)
Is a (hereditarily) Lindelöf T3 space X with ∆(X ) > ω resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson
examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)
YES.

PROBLEM.
Is a Lindelöf T3 space X with ∆(X ) > ω 3-resolvable? ω-resolvable?
or even maximally resolvable?

István Juhász (Rényi Institute) resolvable Hejnice 2012 3 / 11



Malychin’s problem

PROBLEM. (Malychin, 1995)
Is a (hereditarily) Lindelöf T3 space X with ∆(X ) > ω resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson
examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)
YES.

PROBLEM.
Is a Lindelöf T3 space X with ∆(X ) > ω 3-resolvable? ω-resolvable?
or even maximally resolvable?

István Juhász (Rényi Institute) resolvable Hejnice 2012 3 / 11



Malychin’s problem

PROBLEM. (Malychin, 1995)
Is a (hereditarily) Lindelöf T3 space X with ∆(X ) > ω resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson
examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)
YES.

PROBLEM.
Is a Lindelöf T3 space X with ∆(X ) > ω 3-resolvable? ω-resolvable?
or even maximally resolvable?

István Juhász (Rényi Institute) resolvable Hejnice 2012 3 / 11



Malychin’s problem

PROBLEM. (Malychin, 1995)
Is a (hereditarily) Lindelöf T3 space X with ∆(X ) > ω resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson
examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)
YES.

PROBLEM.
Is a Lindelöf T3 space X with ∆(X ) > ω 3-resolvable? ω-resolvable?
or even maximally resolvable?

István Juhász (Rényi Institute) resolvable Hejnice 2012 3 / 11



Malychin’s problem

PROBLEM. (Malychin, 1995)
Is a (hereditarily) Lindelöf T3 space X with ∆(X ) > ω resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson
examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)
YES.

PROBLEM.
Is a Lindelöf T3 space X with ∆(X ) > ω 3-resolvable? ω-resolvable?
or even maximally resolvable?

István Juhász (Rényi Institute) resolvable Hejnice 2012 3 / 11



Malychin’s problem

PROBLEM. (Malychin, 1995)
Is a (hereditarily) Lindelöf T3 space X with ∆(X ) > ω resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson
examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)
YES.

PROBLEM.
Is a Lindelöf T3 space X with ∆(X ) > ω 3-resolvable? ω-resolvable?
or even maximally resolvable?

István Juhász (Rényi Institute) resolvable Hejnice 2012 3 / 11



Malychin’s problem

PROBLEM. (Malychin, 1995)
Is a (hereditarily) Lindelöf T3 space X with ∆(X ) > ω resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson
examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)
YES.

PROBLEM.
Is a Lindelöf T3 space X with ∆(X ) > ω 3-resolvable? ω-resolvable?
or even maximally resolvable?

István Juhász (Rényi Institute) resolvable Hejnice 2012 3 / 11



Pavlov’s theorem

s(X ) = sup{|D| : D ⊂ X is discrete}

e(X ) = sup{|D| : D ⊂ X is closed discrete}

THEOREM. (Pavlov, 2002)

(i) Any T2 space X with ∆(X ) > s(X )+ is maximally resolvable.
(ii) Any T3 space X with ∆(X ) > e(X )+ is ω-resolvable.

THEOREM. (J-S-Sz, 2007)
If ∆(X ) > s(X ) then X is maximally resolvable. So, an HL space X
with ∆(X ) > ω is maximally resolvable.

THEOREM. (J, 2011)
Any T3 space X with e(X ) = ω < ∆(X ) is (2-)resolvable.
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Proof

LEMMA
If X with |X | ≥ κ = cf(κ) > ω has no right sep’d subset of size κ
then X has a κ-resolvable subspace.

PROOF. May assume X = 〈κ, τ〉. Set

T = {x ∈ κ : ∃Cx ∈ C(κ)∀S ⊂ Cx non-st’ry (x /∈ S)},

C = ∆{Cx : x ∈ T} = {α < κ : ∀ x ∈ α ∩ T (α ∈ Cx)} ∈ C(κ).

Then |T ∩ C| < κ, o.w. ∃ non-st’ry S ∈ [C ∩ T ]κ that is right sep’d:

∀ x ∈ S, S \ (x + 1) ⊂ C \ (x + 1) ⊂ Cx implies x /∈ S \ (x + 1).

Thus T is non-st’ry and for Y = κ \ T the ideal I = NS(Y ) is
κ-complete s.t. ∀ y ∈ Y ∀ I ∈ I there is J ∈ I with I ∩ J = ∅ and y ∈ J.

By the "ideal lemma", Y is κ-resolvable.
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J-S-Sz

THEOREM. (J-S-Sz, 2007)

If ∆(X ) ≥ κ = cf(κ) > ω and X has no discrete subset of size κ
then X is κ-resolvable.

PROOF. It suffices to show that X has a κ-resolvable subspace.

(i) If ls(Y ) ≥ κ for every open Y ⊂ X then X is κ-resolvable.

(ii) ls(Y ) < κ for some open Y ⊂ X , then there is H ∈ [Y ]κ left sep’d.

H has no right sep’d subset of size κ, as o.w. it had a discrete subset
of size κ. So, H has a κ-resolvable subspace.

NOTE. Thus if ∆(X ) > s(X ) is regular then X is maximally resolvable.
But if ∆(X ) > s(X ) is singular then the J-S-Sz-thm implies
< ∆(X )-resolvability only. However, in this case ∆(X ) > s(X )+, so by

Pavlov’s theorem X is maximally resolvable.
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< λ-resolvable

THEOREM. (J-S-Sz, 2006)

For any κ ≥ λ = cf(λ) > ω there is a dense X ⊂ D(2)2κ

with ∆(X ) = κ
that is < λ-resolvable but not λ-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We
used the general method of constructing D-forced spaces.

THEOREM. (Illanes, Baskara Rao)
If cf(λ) = ω then every < λ-resolvable space is λ-resolvable.

PROBLEM.
Is this true for each singular λ? How about λ = ℵω1?
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SD spaces

DEFINITION.
(i) D ⊂ X is strongly discrete if there are pairwise disjoint open sets
{Ux : x ∈ D} with x ∈ Ux for all x ∈ D.

(ii) X is an SD space if it is T1 and every x ∈ X is an SD limit.

EXAMPLE. In a T3 space, every countable discrete set is strongly
discrete.

THEOREM. (Sharma and Sharma, 1987)
Every SD space is ω-resolvable.

COROLLARY.
If the SD-limits are dense in a T1 space X then X is (2-)resolvable.
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PROOF

THEOREM. (J 2011)

Any T3 space X with ∆(X ) > e(X ) = ω is (2-)resolvable.

PROOF.

If ∆(X ) > ω1 = e(X )+ then X is ω-resolvable by Pavlov’s thm.

So assume |X | = ∆(X ) = ω1 and show that X has a resolvable
subspace.

If Y ⊂ X is open with s(Y ) = ω then Y is ω1-resolvable,
so can assume s(Y ) = ω1 for Y open or regular closed.

Can assume that no point in X is an SD-limit (by Sh-Sh), hence every
countable discrete subset of X is closed.

Then S =
⋃
{D′ : D ∈ [X ]ω1 is discrete } is dense in X .

NOTE: D′ = D◦ for any discrete D ∈ [X ]ω1 .
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PROOF

LEMMA.
{Dn : n < ω} ⊂ [X ]ω1 be discrete, a ⊂ ω,

A =
⋃

n∈a

Dn ∪
⋃

n∈ω\a

D′
n and B =

⋃

n∈a

D′
n ∪

⋃

n∈ω\a

Dn.

If x ∈ S \ A then there exists D ∈ [X ]ω1 discrete s.t. x ∈ D′ and

A ∩ D′ = ∅ = B ∩ D.

PROOF. By T3, x has an open nbhd U s.t. U ∩ A = ∅.

Then U ∩ D′
n = ∅, hence |U ∩ Dn| ≤ ω for all n ∈ ω.

Pick E ∈ [U]ω1 discrete with x ∈ E ′ and set D = E \
⋃
{Dn : n ∈ ω}.

NOTE: A ∩ B = ∅ implies (A ∪ D) ∩ (B ∪ D′) = ∅.
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PROOF

Write S = {xα : α < ω1} and define discrete Dα ∈ [X ]ω1 with xα ∈ D′
α

and sets aα ⊂ α + 1 for α < ω1 s.t. β < α implies aβ = aα ∩ (β + 1):

– Choose discrete D0 ∈ [X ]ω1 with x0 ∈ D′
0 and set a0 = {0}.

– For α > 0 set a−
α =

⋃
{aβ : β < α}, moreover

Aα =
⋃
{Dβ : β ∈ a−

α } ∪
⋃

{D′
β : β ∈ α \ a−

α } ,

Bα =
⋃
{D′

β : β ∈ a−
α } ∪

⋃
{Dβ : β ∈ α \ a−

α }.

(i) If xα ∈ Aα ∩ Bα set Dα = D0 and aα = {α} ∪ a−
α .

(ii) If xα /∈ Aα use the Lemma to find Dα and set aα = {α} ∪ a−
α .

(iii) If xα ∈ Aα \ Bα use the Lemma again to find Dα and set aα = a−
α .

By induction, Aα ∩ Bα = ∅ for all α < ω1, hence A =
⋃
{Aα : α < ω1}

and B =
⋃
{Bα : α < ω1} are (two) disjoint dense sets in X .
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