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Assume that > w and for every x € X there is some x > p S.t. X is a
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COROLLARY (Pytkeev)

Assume that > w and for every x € X there is some x > p S.t. X is a
B.-point. Then X is u-resolvable.

PROOF If 7 is the topology of X, by Zorn’s lemma there is a maximal
topology o O 7 s.t. if B witnesses that (for some « > ) X is a B,-point
w.r.t. 7 then the same is true w.r.t. o.
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PROOF If 7 is the topology of X, by Zorn’s lemma there is a maximal
topology o O 7 s.t. if B witnesses that (for some « > ) X is a B,-point
w.r.t. 7 then the same is true w.r.t. o.

Then (X, o) is Pytkeev: If Y C X is not g-open then, by maximality,
there is a B.-point (w.r.t. p) X € Y and a witness B for this s.t.
B\Y #0forallB € 5.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 2/11



COROLLARY

COROLLARY (Pytkeev)

Assume that > w and for every x € X there is some x > p S.t. X is a
B.-point. Then X is u-resolvable.

PROOF If 7 is the topology of X, by Zorn’s lemma there is a maximal
topology o O 7 s.t. if B witnesses that (for some « > ) X is a B,-point
w.r.t. 7 then the same is true w.r.t. o.

Then (X, o) is Pytkeev: If Y C X is not g-open then, by maximality,
there is a B,-point (w.r.t. ¢) x € Y and a witness B for this s.t.
B\Y #0forallB eB. So, thereis Z € [X \ Y]=¢ withx € Z°.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 2/11



COROLLARY

COROLLARY (Pytkeev)

Assume that > w and for every x € X there is some x > p S.t. X is a
B.-point. Then X is u-resolvable.

PROOF If 7 is the topology of X, by Zorn’s lemma there is a maximal
topology o O 7 s.t. if B witnesses that (for some « > ) X is a B,-point
w.r.t. 7 then the same is true w.r.t. o.

Then (X, o) is Pytkeev: If Y C X is not g-open then, by maximality,
there is a B,-point (w.r.t. ¢) x € Y and a witness B for this s.t.
B\Y #0forallB eB. So, thereis Z € [X \ Y]=¢ withx € Z°.

Thus (X, o) is maximally resolvable, while A(X, ¢) > pu, by definition.
Consequently, X is pu-resolvable.
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PROBLEM. (Malychin, 1995)
Is a (hereditarily) Lindelof T3 space X with A(X) > w resolvable?
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examples of Lindelof irresolvable spaces.
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THEOREM. (Filatova, 2004)
YES.
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Malychin’s problem

PROBLEM. (Malychin, 1995)

Is a (hereditarily) Lindelof T3 space X with A(X) > w resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson
examples of Lindelof irresolvable spaces.

THEOREM. (Filatova, 2004)
YES.

PROBLEM.

Is a Lindeldf T3 space X with A(X) > w 3-resolvable? w-resolvable?
or even maximally resolvable?
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Pavlov’'s theorem

s(X) = sup{|D|:D cC X is discrete}
e(X) = sup{|D|:D c X is closed discrete}

THEOREM. (Pavlov, 2002)

(i) Any T, space X with A(X) > s(X)* is maximally resolvable.
(i) Any T3 space X with A(X) > e(X)™ is w-resolvable.

THEOREM. (J-S-Sz, 2007)

If A(X) > s(X) then X is maximally resolvable. So, an HL space X
with A(X) > w is maximally resolvable.
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THEOREM. (J-S-Sz, 2007)
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with A(X) > w is maximally resolvable.
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THEOREM. (J, 2011)
Any T3 space X with e(X) =w < A(X) is (2-)resolvable.
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If X with |X| > k = cf(x) > w has no right sep’d subset of size
then X has a k-resolvable subspace.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 5/11



If X with |X| > k = cf(x) > w has no right sep’d subset of size
then X has a k-resolvable subspace.

PROOF. May assume X = (k, ).
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If X with |X| > k = cf(x) > w has no right sep’d subset of size
then X has a k-resolvable subspace.

PROOF. May assume X = (k, 7). Set

T={xekr:3CeC(rk)¥S C Cx non-stry (x ¢ S)},

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 5/11



If X with |X| > k = cf(x) > w has no right sep’d subset of size
then X has a k-resolvable subspace.

PROOF. May assume X = (k, 7). Set

T={xekr:3C eC(r)¥YS C Cx non-stry (

x ¢ S)},
C=A{Cx:xeT}={a<kr:¥xeanT(aeC)}e
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If X with |X| > k = cf(x) > w has no right sep’d subset of size
then X has a k-resolvable subspace.

PROOF. May assume X = (k, 7). Set

T ={xcr:3Cx €C(r)YS C Cyx non-stry (x ¢ S)},
C=A{Cx:xeT}={a<kr:¥xeanT(aecCx)} e C(r).

Then |T NC| < k, 0.w. 3 non-stry S € [CNT]" that is right sep’d:
VxeS, S\(x+1)cC\(x+1)CCximpliesx ¢ S\ (x +1).
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If X with |X| > k = cf(x) > w has no right sep’d subset of size
then X has a k-resolvable subspace.

PROOF. May assume X = (k, 7). Set
T ={xcr:3Cx €C(r)YS C Cyx non-stry (x ¢ S)},
C=A{Cx:xeT}={a<kr:¥xeanT(aecCx)} e C(r).

Then |T NC| < k, 0.w. 3 non-stry S € [CNT]" that is right sep’d:

VxeS, S\(x+1)cC\(x+1)CCximpliesx ¢ S\ (x +1).
Thus T isnon-stry and for Y = x \ T the ideal Z =NS(Y) s B
rk-complete s.t. Vy € YVI € ZthereisJ e ZwithInJ =0andy € J.
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If X with |X| > k = cf(x) > w has no right sep’d subset of size
then X has a k-resolvable subspace.

PROOF. May assume X = (k, 7). Set

T ={xcr:3Cx €C(r)YS C Cyx non-stry (x ¢ S)},
C=A{Cx:xeT}={a<kr:¥xeanT(aecCx)} e C(r).

Then |T NC| < k, 0.w. 3 non-stry S € [CNT]" that is right sep’d:

VxeS, S\(x+1)cC\(x+1)CCximpliesx ¢ S\ (x +1).
Thus T isnon-stry and for Y = x \ T the ideal Z =NS(Y) s B
rk-complete s.t. Vy € YVI € ZthereisJ e ZwithInJ =0andy € J.

By the "ideal lemma", Y is k-resolvable.
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THEOREM. (J-S-Sz, 2007)

If A(X) > k =cf(k) > w and X has no discrete subset of size
then X is x-resolvable.
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PROOF It suffices to show that X has a k-resolvable subspace.

(i) If Is(Y) > k for every open Y C X then X is k-resolvable.
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If A(X) > k =cf(k) > w and X has no discrete subset of size
then X is x-resolvable.

PROOF It suffices to show that X has a k-resolvable subspace.
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(i) Is(Y) < k for some open Y C X, then there is H € [Y]" left sep'd.
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(i) Is(Y) < k for some open Y C X, then there is H € [Y]" left sep'd.

H has no right sep’d subset of size «, as o.w. it had a discrete subset
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NOTE. Thus if A(X) > s(X) is regular then X is maximally resolvable.
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If A(X) > k =cf(k) > w and X has no discrete subset of size
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(i) Is(Y) < k for some open Y C X, then there is H € [Y]" left sep'd.

H has no right sep’d subset of size «, as o.w. it had a discrete subset
of size k. So, H has a k-resolvable subspace.

NOTE. Thus if A(X) > s(X) is regular then X is maximally resolvable.

But if A(X) > s(X) is singular then the J-S-Sz-thm implies
< A(X)-resolvability only.
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(i) Is(Y) < k for some open Y C X, then there is H € [Y]" left sep'd.

H has no right sep’d subset of size «, as o.w. it had a discrete subset
of size k. So, H has a k-resolvable subspace.

NOTE. Thus if A(X) > s(X) is regular then X is maximally resolvable.
But if A(X) > s(X) is singular then the J-S-Sz-thm implies

< A(X)-resolvability only. However, in this case A(X) > s(X)*, so by
Pavlov's theorem X is maximally resolvable.
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< \-resolvable

THEOREM. (J-S-Sz, 2006)

Forany » > \ = cf(\) > w there is a dense X C D(2)?" with A(X) = &
that is < A\-resolvable but not A-resolvable.
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THEOREM. (lllanes, Baskara Rao)
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THEOREM. (J-S-Sz, 2006)

Forany » > \ = cf(\) > w there is a dense X C D(2)?" with A(X) = &
that is < A\-resolvable but not A-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We
used the general method of constructing D-forced spaces.

THEOREM. (lllanes, Baskara Rao)
If cf(\) = w then every < A-resolvable space is A-resolvable.

Is this true for each singular \?

PROBLEM. J
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DEFINITION.
() D C X is strongly discrete if there are pairwise disjoint open sets
{Uyx : x € D} with x € Uy for all x € D.
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Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 8/11



DEFINITION.
() D C X is strongly discrete if there are pairwise disjoint open sets
{Uyx : x € D} with x € Uy for all x € D.

(i) X is an SD space if itis Ty and every x € X is an SD limit.

EXAMPLE. In a T3 space, every countable discrete set is strongly
discrete.

Istvan Juhasz (Rényi Institute) resolvable Hejnice 2012 8/11



DEFINITION.
() D C X is strongly discrete if there are pairwise disjoint open sets
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(i) X is an SD space if itis Ty and every x € X is an SD limit.

EXAMPLE. In a T3 space, every countable discrete set is strongly
discrete.

THEOREM. (Sharma and Sharma, 1987)
Every SD space is w-resolvable.
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EXAMPLE. In a T3 space, every countable discrete set is strongly
discrete.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is w-resolvable.

COROLLARY.
If the SD-limits are dense in a T, space X then X is (2-)resolvable.
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COROLLARY.
If the SD-limits are dense in a T, space X then X is (2-)resolvable.
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Write S = {X, : @ < w;} and define discrete D,, € [X]“t with x,, € D/,
andsets a, Ca+1fora <wp st f<aimpliesag=a,N(B+1):
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(i) Ifx, € A,NB, setD, = Dg and a, = {a} Uaj.
(i) If x, ¢ A, use the Lemma to find D, and set a, = {a} Ua;.
(i) If x, € A, \ B, use the Lemma again to find D,, and set a, = a.

By induction, A, N B, = 0 for all « < w1, hence A = [ J{A, : o < w1}
and B = [ J{B, : @ < w1} are (two) disjoint dense sets in X.
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