RESOLVABILITY, PART 2.

István Juhász

Alfréd Rényi Institute of Mathematics

Hejnice, January/February 2012

• • • • • • • • • • • •

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

< ロ > < 同 > < 三 > < 三 >

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

イロン イロン イヨン イヨン

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

イロン イロン イヨン イヨン

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

Is a (hereditarily) Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)

PROBLEM.

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ 3-resolvable? ω -resolvable? or even maximally resolvable?

Malychin's problem

PROBLEM. (Malychin, 1995)

Is a (hereditarily) Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)

YES.

PROBLEM.

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ 3-resolvable? ω -resolvable? or even maximally resolvable?

Is a (hereditarily) Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004) YES.

PROBLEM.

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ 3-resolvable? ω -resolvable? or even maximally resolvable?

Is a (hereditarily) Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)	
/ES.]

PROBLEM.

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ 3-resolvable? ω -resolvable? or even maximally resolvable?

< ロ > < 同 > < 三 > < 三 >

Is a (hereditarily) Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)	
YES.	

PROBLEM.

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ 3-resolvable? ω -resolvable?

Is a (hereditarily) Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)	
YES.	

PROBLEM.

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ 3-resolvable? ω -resolvable?

イロン イロン イヨン イヨン

Is a (hereditarily) Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Hausdorff, and Pavlov even Uryson examples of Lindelöf irresolvable spaces.

THEOREM. (Filatova, 2004)	
YES.	

PROBLEM.

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ 3-resolvable? ω -resolvable? or even maximally resolvable?

István Juhász (Rényi Institute)

イロン イロン イヨン イヨン

 $s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}$ $e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}$

THEOREM. (Pavlov, 2002)

(i) Any *T*₂ space *X* with Δ(*X*) > *s*(*X*)⁺ is maximally resolvable.
(ii) Any *T*₃ space *X* with Δ(*X*) > *e*(*X*)⁺ is ω-resolvable.

THEOREM. (J-S-Sz, 2007)

If $\Delta(X) > s(X)$ then X is maximally resolvable. So, an HL space X with $\Delta(X) > \omega$ is maximally resolvable.

THEOREM. (J, 2011)

 $s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}$ $e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}$

THEOREM. (Pavlov, 2002)

(i) Any *T*₂ space *X* with Δ(*X*) > *s*(*X*)⁺ is maximally resolvable.
(ii) Any *T*₃ space *X* with Δ(*X*) > *e*(*X*)⁺ is ω-resolvable.

THEOREM. (J-S-Sz, 2007)

If $\Delta(X) > s(X)$ then X is maximally resolvable. So, an HL space X with $\Delta(X) > \omega$ is maximally resolvable.

THEOREM. (J, 2011)

$$\begin{array}{lll} s(X) &=& \sup\{|D|: D \subset X \text{ is discrete}\}\\ e(X) &=& \sup\{|D|: D \subset X \text{ is closed discrete}\} \end{array}$$

THEOREM. (Pavlov, 2002)

(i) Any *T*₂ space *X* with Δ(*X*) > *s*(*X*)⁺ is maximally resolvable.
(ii) Any *T*₃ space *X* with Δ(*X*) > *e*(*X*)⁺ is ω-resolvable.

THEOREM. (J-S-Sz, 2007)

If $\Delta(X) > s(X)$ then X is maximally resolvable. So, an HL space X with $\Delta(X) > \omega$ is maximally resolvable.

THEOREM. (J, 2011)

 $s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}$ $e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}$

THEOREM. (Pavlov, 2002)

(i) Any *T*₂ space *X* with Δ(*X*) > *s*(*X*)⁺ is maximally resolvable.
 (ii) Any *T*₃ space *X* with Δ(*X*) > *e*(*X*)⁺ is ω-resolvable.

THEOREM. (J-S-Sz, 2007)

If $\Delta(X) > s(X)$ then X is maximally resolvable. So, an HL space X with $\Delta(X) > \omega$ is maximally resolvable.

THEOREM. (J, 2011)

 $s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}$ $e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}$

THEOREM. (Pavlov, 2002)

(i) Any *T*₂ space *X* with Δ(*X*) > *s*(*X*)⁺ is maximally resolvable.
(ii) Any *T*₃ space *X* with Δ(*X*) > *e*(*X*)⁺ is ω-resolvable.

THEOREM. (J-S-Sz, 2007)

If $\Delta(X) > s(X)$ then X is maximally resolvable. So, an HL space X with $\Delta(X) > \omega$ is maximally resolvable.

THEOREM. (J, 2011)

THEOREM. (Pavlov, 2002)

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable. (ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω -resolvable.

THEOREM. (J-S-Sz, 2007)

If $\Delta(X) > s(X)$ then X is maximally resolvable. So, an HL space X with $\Delta(X) > \omega$ is maximally resolvable.

THEOREM. (J, 2011)

THEOREM. (Pavlov, 2002)

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable. (ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω -resolvable.

THEOREM. (J-S-Sz, 2007)

If $\Delta(X) > s(X)$ then X is maximally resolvable. So, an HL space X with $\Delta(X) > \omega$ is maximally resolvable.

THEOREM. (J, 2011)

THEOREM. (Pavlov, 2002)

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable. (ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω -resolvable.

THEOREM. (J-S-Sz, 2007)

If $\Delta(X) > s(X)$ then X is maximally resolvable. So, an HL space X with $\Delta(X) > \omega$ is maximally resolvable.

THEOREM. (J, 2011)

THEOREM. (Pavlov, 2002)

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable. (ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω -resolvable.

THEOREM. (J-S-Sz, 2007)

If $\Delta(X) > s(X)$ then X is maximally resolvable. So, an HL space X with $\Delta(X) > \omega$ is maximally resolvable.

THEOREM. (J, 2011)

If X with $|X| \ge \kappa = cf(\kappa) > \omega$ has no right sep'd subset of size κ then X has a κ -resolvable subspace.

PROOF. May assume $X = \langle \kappa, \tau \rangle$. Set

 $T = \{ x \in \kappa : \exists C_x \in \mathcal{C}(\kappa) \,\forall \, S \subset C_x \text{ non-stry } (x \notin \overline{S}) \},\$ $C = \Delta \{ C_x : x \in T \} = \{ \alpha < \kappa : \forall x \in \alpha \cap T \, (\alpha \in C_x) \} \in \mathcal{C}(\kappa).$

Then $|T \cap C| < \kappa$, o.w. \exists non-st'ry $S \in [C \cap T]^{\kappa}$ that is right sep'd: $\forall x \in S, S \setminus (x + 1) \subset C \setminus (x + 1) \subset C_x$ implies $x \notin \overline{S \setminus (x + 1)}$. Thus *T* is non-st'ry and for $Y = \kappa \setminus T$ the ideal $\mathcal{I} = NS(Y)$ is κ -complete s.t. $\forall y \in Y \forall I \in \mathcal{I}$ there is $J \in \mathcal{I}$ with $I \cap J = \emptyset$ and $y \in \overline{J}$. By the "ideal lemma", *Y* is κ -resolvable.

< ロ > < 同 > < 三 > < 三 >

If X with $|X| \ge \kappa = cf(\kappa) > \omega$ has no right sep'd subset of size κ then X has a κ -resolvable subspace.

PROOF. May assume $X = \langle \kappa, \tau \rangle$. Set

 $T = \{ x \in \kappa : \exists C_x \in \mathcal{C}(\kappa) \,\forall \, S \subset C_x \text{ non-stry } (x \notin \overline{S}) \},\$ $C = \Delta \{ C_x : x \in T \} = \{ \alpha < \kappa : \forall x \in \alpha \cap T \, (\alpha \in C_x) \} \in \mathcal{C}(\kappa).$

Then $|T \cap C| < \kappa$, o.w. \exists non-stry $S \in [C \cap T]^{\kappa}$ that is right sep'd: $\forall x \in S, S \setminus (x+1) \subset C \setminus (x+1) \subset C_x$ implies $x \notin \overline{S \setminus (x+1)}$. Thus *T* is non-stry and for $Y = \kappa \setminus T$ the ideal $\mathcal{I} = NS(Y)$ is κ -complete s.t. $\forall y \in Y \forall I \in \mathcal{I}$ there is $J \in \mathcal{I}$ with $I \cap J = \emptyset$ and $y \in \overline{J}$. By the "ideal lemma", *Y* is κ -resolvable.

< ロ > < 同 > < 三 > < 三 >

If X with $|X| \ge \kappa = cf(\kappa) > \omega$ has no right sep'd subset of size κ then X has a κ -resolvable subspace.

PROOF. May assume $X = \langle \kappa, \tau \rangle$. Set

 $T = \{ x \in \kappa : \exists C_x \in \mathcal{C}(\kappa) \forall S \subset C_x \text{ non-stry } (x \notin \overline{S}) \},\$ $C = \Delta \{ C_x : x \in T \} = \{ \alpha < \kappa : \forall x \in \alpha \cap T (\alpha \in C_x) \} \in \mathcal{C}(\kappa).$

Then $|T \cap C| < \kappa$, o.w. \exists non-st'ry $S \in [C \cap T]^{\kappa}$ that is right sep'd:

 $\forall x \in S, S \setminus (x+1) \subset C \setminus (x+1) \subset C_x$ implies $x \notin \overline{S \setminus (x+1)}$.

Thus *T* is non-st'ry and for $Y = \kappa \setminus T$ the ideal $\mathcal{I} = NS(Y)$ is κ -complete s.t. $\forall y \in Y \forall I \in \mathcal{I}$ there is $J \in \mathcal{I}$ with $I \cap J = \emptyset$ and $y \in \overline{J}$. By the "ideal lemma", Y is κ -resolvable.

If X with $|X| \ge \kappa = cf(\kappa) > \omega$ has no right sep'd subset of size κ then X has a κ -resolvable subspace.

PROOF. May assume $X = \langle \kappa, \tau \rangle$. Set

 $T = \{ x \in \kappa : \exists C_x \in \mathcal{C}(\kappa) \forall S \subset C_x \text{ non-st'ry } (x \notin \overline{S}) \},\$ $C = \Delta \{ C_x : x \in T \} = \{ \alpha < \kappa : \forall x \in \alpha \cap T (\alpha \in C_x) \} \in \mathcal{C}(\kappa).$

Then $|T \cap C| < \kappa$, o.w. \exists non-st'ry $S \in [C \cap T]^{\kappa}$ that is right sep'd: $\forall x \in S, S \setminus (x+1) \subset C \setminus (x+1) \subset C_x$ implies $x \notin \overline{S \setminus (x+1)}$. Thus *T* is non-st'ry and for $Y = \kappa \setminus T$ the ideal $\mathcal{I} = NS(Y)$ is κ -complete s.t. $\forall y \in Y \forall I \in \mathcal{I}$ there is $J \in \mathcal{I}$ with $I \cap J = \emptyset$ and $y \in \overline{J}$. By the "ideal lemma", *Y* is κ -resolvable.

If X with $|X| \ge \kappa = cf(\kappa) > \omega$ has no right sep'd subset of size κ then X has a κ -resolvable subspace.

PROOF. May assume $X = \langle \kappa, \tau \rangle$. Set

$$T = \{ x \in \kappa : \exists C_x \in \mathcal{C}(\kappa) \forall S \subset C_x \text{ non-stry } (x \notin \overline{S}) \},\$$
$$C = \Delta \{ C_x : x \in T \} = \{ \alpha < \kappa : \forall x \in \alpha \cap T (\alpha \in C_x) \} \in \mathcal{C}(\kappa).$$

Then $|T \cap C| < \kappa$, o.w. \exists non-st'ry $S \in [C \cap T]^{\kappa}$ that is right sep'd: $\forall x \in S, S \setminus (x+1) \subset C \setminus (x+1) \subset C_x$ implies $x \notin \overline{S \setminus (x+1)}$. Thus *T* is non-st'ry and for $Y = \kappa \setminus T$ the ideal $\mathcal{I} = NS(Y)$ is κ -complete s.t. $\forall y \in Y \forall I \in \mathcal{I}$ there is $J \in \mathcal{I}$ with $I \cap J = \emptyset$ and $y \in \overline{J}$. By the "ideal lemma", *Y* is κ -resolvable.

< ロ > < 同 > < 三 > < 三 >

If X with $|X| \ge \kappa = cf(\kappa) > \omega$ has no right sep'd subset of size κ then X has a κ -resolvable subspace.

PROOF. May assume $X = \langle \kappa, \tau \rangle$. Set

$$T = \{ x \in \kappa : \exists C_x \in \mathcal{C}(\kappa) \forall S \subset C_x \text{ non-stry } (x \notin \overline{S}) \},\$$
$$C = \Delta \{ C_x : x \in T \} = \{ \alpha < \kappa : \forall x \in \alpha \cap T (\alpha \in C_x) \} \in \mathcal{C}(\kappa).$$

Then $|T \cap C| < \kappa$, o.w. \exists non-st'ry $S \in [C \cap T]^{\kappa}$ that is right sep'd:

 $\forall x \in S, S \setminus (x+1) \subset C \setminus (x+1) \subset C_x \text{ implies } x \notin \overline{S \setminus (x+1)}.$

Thus *T* is non-st'ry and for $Y = \kappa \setminus T$ the ideal $\mathcal{I} = NS(Y)$ is κ -complete s.t. $\forall y \in Y \forall I \in \mathcal{I}$ there is $J \in \mathcal{I}$ with $I \cap J = \emptyset$ and $y \in \overline{J}$. By the "ideal lemma", Y is κ -resolvable.

ヘロト ヘ回ト ヘヨト ヘヨ

If X with $|X| \ge \kappa = cf(\kappa) > \omega$ has no right sep'd subset of size κ then X has a κ -resolvable subspace.

PROOF. May assume $X = \langle \kappa, \tau \rangle$. Set

$$T = \{ x \in \kappa : \exists C_x \in \mathcal{C}(\kappa) \forall S \subset C_x \text{ non-stry } (x \notin \overline{S}) \},\$$
$$C = \Delta \{ C_x : x \in T \} = \{ \alpha < \kappa : \forall x \in \alpha \cap T (\alpha \in C_x) \} \in \mathcal{C}(\kappa).$$

Then $|T \cap C| < \kappa$, o.w. \exists non-st'ry $S \in [C \cap T]^{\kappa}$ that is right sep'd: $\forall x \in S, S \setminus (x+1) \subset C \setminus (x+1) \subset C_x$ implies $x \notin \overline{S \setminus (x+1)}$. Thus T is non-st'ry and for $Y = \kappa \setminus T$ the ideal $\mathcal{I} = NS(Y)$ is κ -complete s.t. $\forall y \in Y \forall I \in \mathcal{I}$ there is $J \in \mathcal{I}$ with $I \cap J = \emptyset$ and $y \in \overline{J}$. By the "ideal lemma", Y is κ -resolvable.

If X with $|X| \ge \kappa = cf(\kappa) > \omega$ has no right sep'd subset of size κ then X has a κ -resolvable subspace.

PROOF. May assume $X = \langle \kappa, \tau \rangle$. Set

$$T = \{ x \in \kappa : \exists C_x \in \mathcal{C}(\kappa) \forall S \subset C_x \text{ non-stry } (x \notin \overline{S}) \},\$$
$$C = \Delta \{ C_x : x \in T \} = \{ \alpha < \kappa : \forall x \in \alpha \cap T (\alpha \in C_x) \} \in \mathcal{C}(\kappa).$$

Then $|T \cap C| < \kappa$, o.w. \exists non-st'ry $S \in [C \cap T]^{\kappa}$ that is right sep'd: $\forall x \in S, S \setminus (x + 1) \subset C \setminus (x + 1) \subset C_x$ implies $x \notin \overline{S \setminus (x + 1)}$. Thus *T* is non-st'ry and for $Y = \kappa \setminus T$ the ideal $\mathcal{I} = NS(Y)$ is κ -complete s.t. $\forall y \in Y \forall I \in \mathcal{I}$ there is $J \in \mathcal{I}$ with $I \cap J = \emptyset$ and $y \in \overline{J}$. By the "ideal lemma", Y is κ -resolvable.

イロン イ理 とく ヨン イヨン

If X with $|X| \ge \kappa = cf(\kappa) > \omega$ has no right sep'd subset of size κ then X has a κ -resolvable subspace.

PROOF. May assume $X = \langle \kappa, \tau \rangle$. Set

$$T = \{ x \in \kappa : \exists C_x \in \mathcal{C}(\kappa) \forall S \subset C_x \text{ non-stry } (x \notin \overline{S}) \},\$$
$$C = \Delta \{ C_x : x \in T \} = \{ \alpha < \kappa : \forall x \in \alpha \cap T (\alpha \in C_x) \} \in \mathcal{C}(\kappa).$$

Then $|T \cap C| < \kappa$, o.w. \exists non-st'ry $S \in [C \cap T]^{\kappa}$ that is right sep'd: $\forall x \in S, S \setminus (x + 1) \subset C \setminus (x + 1) \subset C_x$ implies $x \notin \overline{S \setminus (x + 1)}$. Thus *T* is non-st'ry and for $Y = \kappa \setminus T$ the ideal $\mathcal{I} = NS(Y)$ is κ -complete s.t. $\forall y \in Y \forall I \in \mathcal{I}$ there is $J \in \mathcal{I}$ with $I \cap J = \emptyset$ and $y \in \overline{J}$. By the "ideal lemma", *Y* is κ -resolvable.

イロン 不聞と 不良と 不良と 一度

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that X has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd.

H has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

イロン イロン イヨン イヨン

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that X has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd.

H has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

イロン イロン イヨン イヨン

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that *X* has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd. *H* has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

< ロ > < 同 > < 三 > < 三 >

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that *X* has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd. *H* has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

< ロ > < 同 > < 三 > < 三 >

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that *X* has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd.

H has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that *X* has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd.

H has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that *X* has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd. *H* has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that *X* has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd. *H* has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that *X* has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd. *H* has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that *X* has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd. *H* has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

PROOF. It suffices to show that *X* has a κ -resolvable subspace.

(i) If $Is(Y) \ge \kappa$ for every open $Y \subset X$ then X is κ -resolvable.

(ii) $Is(Y) < \kappa$ for some open $Y \subset X$, then there is $H \in [Y]^{\kappa}$ left sep'd. *H* has no right sep'd subset of size κ , as o.w. it had a discrete subset of size κ . So, *H* has a κ -resolvable subspace.

NOTE. Thus if $\Delta(X) > s(X)$ is regular then X is maximally resolvable. But if $\Delta(X) > s(X)$ is singular then the J-S-Sz-thm implies $< \Delta(X)$ -resolvability only. However, in this case $\Delta(X) > s(X)^+$, so by Pavlov's theorem X is maximally resolvable.

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $\mathsf{cf}(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

イロト イヨト イヨト -

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

イロト イヨト イヨト -

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every $x \in X$ is an SD limit.

EXAMPLE. In a T_3 space, every countable discrete set is strongly discrete.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

COROLLARY.

If the SD-limits are dense in a T_1 space X then X is (2-)resolvable.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every $x \in X$ is an SD limit.

EXAMPLE. In a T_3 space, every countable discrete set is strongly discrete.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

COROLLARY.

If the SD-limits are dense in a T_1 space X then X is (2-)resolvable.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every $x \in X$ is an SD limit.

EXAMPLE. In a T_3 space, every countable discrete set is strongly discrete.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

COROLLARY.

If the SD-limits are dense in a T_1 space X then X is (2-)resolvable.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every $x \in X$ is an SD limit.

EXAMPLE. In a T_3 space, every countable discrete set is strongly discrete.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

COROLLARY.

If the SD-limits are dense in a T_1 space X then X is (2-)resolvable.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every $x \in X$ is an SD limit.

EXAMPLE. In a T_3 space, every countable discrete set is strongly discrete.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

COROLLARY.

If the SD-limits are dense in a T_1 space X then X is (2-)resolvable.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every $x \in X$ is an SD limit.

EXAMPLE. In a T_3 space, every countable discrete set is strongly discrete.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

COROLLARY.

If the SD-limits are dense in a T_1 space X then X is (2-)resolvable.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every $x \in X$ is an SD limit.

EXAMPLE. In a T_3 space, every countable discrete set is strongly discrete.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

COROLLARY.

If the SD-limits are dense in a T_1 space X then X is (2-)resolvable.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every $x \in X$ is an SD limit.

EXAMPLE. In a T_3 space, every countable discrete set is strongly discrete.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

COROLLARY.

If the SD-limits are dense in a T_1 space X then X is (2-)resolvable.

THEOREM. (J 2011)

Any T_3 space X with $\Delta(X) > e(X) = \omega$ is (2-)resolvable. PROOF.

If $\Delta(X) > \omega_1 = e(X)^+$ then X is ω -resolvable by Pavlov's thm.

So assume $|X| = \Delta(X) = \omega_1$ and show that X has a resolvable subspace.

If $Y \subset X$ is open with $s(Y) = \omega$ then Y is ω_1 -resolvable, so can assume $s(Y) = \omega_1$ for Y open or regular closed.

Can assume that no point in X is an SD-limit (by Sh-Sh), hence every countable discrete subset of X is closed.

Then $S = \bigcup \{D' : D \in [X]^{\omega_1} \text{ is discrete } \}$ is dense in *X*.

NOTE: $D' = D^\circ$ for any discrete $D \in [X]^{\omega_1}$.

THEOREM. (J 2011)

Any T_3 space X with $\Delta(X) > e(X) = \omega$ is (2-)resolvable.

PROOF.

If $\Delta(X) > \omega_1 = e(X)^+$ then X is ω -resolvable by Pavlov's thm.

So assume $|X| = \Delta(X) = \omega_1$ and show that X has a resolvable subspace.

If $Y \subset X$ is open with $s(Y) = \omega$ then Y is ω_1 -resolvable, so can assume $s(Y) = \omega_1$ for Y open or regular closed.

Can assume that no point in X is an SD-limit (by Sh-Sh), hence every countable discrete subset of X is closed.

Then $S = \bigcup \{D' : D \in [X]^{\omega_1} \text{ is discrete } \}$ is dense in *X*.

NOTE: $D' = D^\circ$ for any discrete $D \in [X]^{\omega_1}$.

THEOREM. (J 2011)

Any T_3 space X with $\Delta(X) > e(X) = \omega$ is (2-)resolvable.

PROOF.

If $\Delta(X) > \omega_1 = e(X)^+$ then X is ω -resolvable by Pavlov's thm.

So assume $|X| = \Delta(X) = \omega_1$ and show that X has a resolvable subspace.

If $Y \subset X$ is open with $s(Y) = \omega$ then Y is ω_1 -resolvable, so can assume $s(Y) = \omega_1$ for Y open or regular closed.

Can assume that no point in X is an SD-limit (by Sh-Sh), hence every countable discrete subset of X is closed.

Then $S = \bigcup \{ D' : D \in [X]^{\omega_1} \text{ is discrete } \}$ is dense in *X*.

NOTE: $D' = D^\circ$ for any discrete $D \in [X]^{\omega_1}$.

THEOREM. (J 2011)

Any T_3 space X with $\Delta(X) > e(X) = \omega$ is (2-)resolvable.

PROOF.

If $\Delta(X) > \omega_1 = e(X)^+$ then X is ω -resolvable by Pavlov's thm.

So assume $|X| = \Delta(X) = \omega_1$ and show that X has a resolvable subspace.

If $Y \subset X$ is open with $s(Y) = \omega$ then Y is ω_1 -resolvable, so can assume $s(Y) = \omega_1$ for Y open or regular closed.

Can assume that no point in X is an SD-limit (by Sh-Sh), hence every countable discrete subset of X is closed.

Then $S = \bigcup \{ D' : D \in [X]^{\omega_1} \text{ is discrete } \}$ is dense in *X*.

NOTE: $D' = D^\circ$ for any discrete $D \in [X]^{\omega_1}$.

イロト イロト イヨト イヨト 二日

THEOREM. (J 2011)

Any T_3 space X with $\Delta(X) > e(X) = \omega$ is (2-)resolvable.

PROOF.

If $\Delta(X) > \omega_1 = e(X)^+$ then X is ω -resolvable by Pavlov's thm.

So assume $|X| = \Delta(X) = \omega_1$ and show that X has a resolvable subspace.

If $Y \subset X$ is open with $s(Y) = \omega$ then Y is ω_1 -resolvable, so can assume $s(Y) = \omega_1$ for Y open or regular closed.

Can assume that no point in X is an SD-limit (by Sh-Sh), hence every countable discrete subset of X is closed.

Then $S = \bigcup \{ D' : D \in [X]^{\omega_1} \text{ is discrete } \}$ is dense in *X*.

NOTE: $D' = D^\circ$ for any discrete $D \in [X]^{\omega_1}$.

イロト イポト イヨト イヨト 二日

THEOREM. (J 2011)

Any T_3 space X with $\Delta(X) > e(X) = \omega$ is (2-)resolvable.

PROOF.

If $\Delta(X) > \omega_1 = e(X)^+$ then X is ω -resolvable by Pavlov's thm.

So assume $|X| = \Delta(X) = \omega_1$ and show that X has a resolvable subspace.

If $Y \subset X$ is open with $s(Y) = \omega$ then Y is ω_1 -resolvable, so can assume $s(Y) = \omega_1$ for Y open or regular closed.

Can assume that no point in X is an SD-limit (by Sh-Sh), hence every countable discrete subset of X is closed.

Then $S = \bigcup \{D' : D \in [X]^{\omega_1} \text{ is discrete } \}$ is dense in *X*. NOTE: $D' = D^\circ$ for any discrete $D \in [X]^{\omega_1}$.

THEOREM. (J 2011)

Any T_3 space X with $\Delta(X) > e(X) = \omega$ is (2-)resolvable.

PROOF.

If $\Delta(X) > \omega_1 = e(X)^+$ then X is ω -resolvable by Pavlov's thm.

So assume $|X| = \Delta(X) = \omega_1$ and show that X has a resolvable subspace.

If $Y \subset X$ is open with $s(Y) = \omega$ then Y is ω_1 -resolvable, so can assume $s(Y) = \omega_1$ for Y open or regular closed.

Can assume that no point in X is an SD-limit (by Sh-Sh), hence every countable discrete subset of X is closed.

Then $S = \bigcup \{ D' : D \in [X]^{\omega_1} \text{ is discrete } \}$ is dense in *X*.

NOTE: $D' = D^\circ$ for any discrete $D \in [X]^{\omega_1}$.

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

THEOREM. (J 2011)

Any T_3 space X with $\Delta(X) > e(X) = \omega$ is (2-)resolvable.

PROOF.

If $\Delta(X) > \omega_1 = e(X)^+$ then X is ω -resolvable by Pavlov's thm.

So assume $|X| = \Delta(X) = \omega_1$ and show that X has a resolvable subspace.

If $Y \subset X$ is open with $s(Y) = \omega$ then Y is ω_1 -resolvable, so can assume $s(Y) = \omega_1$ for Y open or regular closed.

Can assume that no point in X is an SD-limit (by Sh-Sh), hence every countable discrete subset of X is closed.

Then $S = \bigcup \{ D' : D \in [X]^{\omega_1} \text{ is discrete } \}$ is dense in *X*.

NOTE: $D' = D^{\circ}$ for any discrete $D \in [X]^{\omega_1}$.

イロト イポト イヨト イヨト 二日

THEOREM. (J 2011)

Any T_3 space X with $\Delta(X) > e(X) = \omega$ is (2-)resolvable.

PROOF.

If $\Delta(X) > \omega_1 = e(X)^+$ then X is ω -resolvable by Pavlov's thm.

So assume $|X| = \Delta(X) = \omega_1$ and show that X has a resolvable subspace.

If $Y \subset X$ is open with $s(Y) = \omega$ then Y is ω_1 -resolvable, so can assume $s(Y) = \omega_1$ for Y open or regular closed.

Can assume that no point in X is an SD-limit (by Sh-Sh), hence every countable discrete subset of X is closed.

Then $S = \bigcup \{ D' : D \in [X]^{\omega_1} \text{ is discrete } \}$ is dense in *X*.

NOTE: $D' = D^{\circ}$ for any discrete $D \in [X]^{\omega_1}$.

イロト イポト イヨト イヨト 二日

LEMMA.

 $\{D_n : n < \omega\} \subset [X]^{\omega_1}$ be discrete, $a \subset \omega$,

 $A = \bigcup_{n \in a} D_n \cup \bigcup_{n \in \omega \setminus a} D'_n \text{ and } B = \bigcup_{n \in a} D'_n \cup \bigcup_{n \in \omega \setminus a} D_n.$ If $x \in S \setminus \overline{A}$ then there exists $D \in [X]^{\omega_1}$ discrete s.t. $x \in D'$ and $A \cap D' = \emptyset = B \cap D.$

PROOF. By T_3 , x has an open nbhd U s.t. $\overline{U} \cap \overline{A} = \emptyset$. Then $\overline{U} \cap D'_n = \emptyset$, hence $|\overline{U} \cap D_n| \le \omega$ for all $n \in \omega$. Pick $E \in [U]^{\omega_1}$ discrete with $x \in E'$ and set $D = E \setminus \bigcup \{D_n : n \in \omega\}$.

NOTE: $A \cap B = \emptyset$ implies $(A \cup D) \cap (B \cup D') = \emptyset$.

LEMMA.

$\{D_n : n < \omega\} \subset [X]^{\omega_1}$ be discrete, $a \subset \omega$, $A = \bigcup_{n \in a} D_n \cup \bigcup_{n \in \omega \setminus a} D'_n$ and $B = \bigcup_{n \in a} D'_n \cup \bigcup_{n \in \omega \setminus a} D_n$. If $x \in S \setminus \overline{A}$ then there exists $D \in [X]^{\omega_1}$ discrete s.t. $x \in D'$ and $A \cap D' = \emptyset = B \cap D$.

PROOF. By T_3 , x has an open nbhd U s.t. $\overline{U} \cap \overline{A} = \emptyset$. Then $\overline{U} \cap D'_n = \emptyset$, hence $|\overline{U} \cap D_n| \le \omega$ for all $n \in \omega$. Pick $E \in [U]^{\omega_1}$ discrete with $x \in E'$ and set $D = E \setminus \bigcup \{D_n : n \in \omega\}$.

NOTE: $A \cap B = \emptyset$ implies $(A \cup D) \cap (B \cup D') = \emptyset$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

LEMMA.

$$\{D_n : n < \omega\} \subset [X]^{\omega_1} \text{ be discrete, } a \subset \omega,$$
$$A = \bigcup_{n \in a} D_n \cup \bigcup_{n \in \omega \setminus a} D'_n \text{ and } B = \bigcup_{n \in a} D'_n \cup \bigcup_{n \in \omega \setminus a} D_n.$$
If $x \in S \setminus \overline{A}$ then there exists $D \in [X]^{\omega_1}$ discrete s.t. $x \in D'$ and
$$A \cap D' = \emptyset = B \cap D.$$

PROOF. By T_3 , x has an open nbhd U s.t. $\overline{U} \cap \overline{A} = \emptyset$. Then $\overline{U} \cap D'_n = \emptyset$, hence $|\overline{U} \cap D_n| \le \omega$ for all $n \in \omega$. Pick $E \in [U]^{\omega_1}$ discrete with $x \in E'$ and set $D = E \setminus \bigcup \{D_n : n \in \omega\}$.

NOTE: $A \cap B = \emptyset$ implies $(A \cup D) \cap (B \cup D') = \emptyset$.

< 🗇 🕨 < 🖃 🕨

LEMMA.

$$\{D_n : n < \omega\} \subset [X]^{\omega_1} \text{ be discrete, } a \subset \omega,$$
$$A = \bigcup_{n \in a} D_n \cup \bigcup_{n \in \omega \setminus a} D'_n \text{ and } B = \bigcup_{n \in a} D'_n \cup \bigcup_{n \in \omega \setminus a} D_n.$$
If $x \in S \setminus \overline{A}$ then there exists $D \in [X]^{\omega_1}$ discrete s.t. $x \in D'$ and
$$A \cap D' = \emptyset = B \cap D.$$

PROOF. By T_3 , x has an open nbhd U s.t. $\overline{U} \cap \overline{A} = \emptyset$. Then $\overline{U} \cap D'_n = \emptyset$, hence $|\overline{U} \cap D_n| \le \omega$ for all $n \in \omega$. Pick $E \in [U]^{\omega_1}$ discrete with $x \in E'$ and set $D = E \setminus \bigcup \{D_n : n \in \omega\}$.

NOTE: $A \cap B = \emptyset$ implies $(A \cup D) \cap (B \cup D') = \emptyset$.

LEMMA.

$$\{D_n : n < \omega\} \subset [X]^{\omega_1} \text{ be discrete, } a \subset \omega,$$
$$A = \bigcup_{n \in a} D_n \cup \bigcup_{n \in \omega \setminus a} D'_n \text{ and } B = \bigcup_{n \in a} D'_n \cup \bigcup_{n \in \omega \setminus a} D_n.$$
If $x \in S \setminus \overline{A}$ then there exists $D \in [X]^{\omega_1}$ discrete s.t. $x \in D'$ and
$$A \cap D' = \emptyset = B \cap D.$$

PROOF. By T_3 , *x* has an open nbhd *U* s.t. $\overline{U} \cap \overline{A} = \emptyset$. Then $\overline{U} \cap D'_n = \emptyset$, hence $|\overline{U} \cap D_n| \le \omega$ for all $n \in \omega$. Pick $E \in [U]^{\omega_1}$ discrete with $x \in E'$ and set $D = E \setminus \bigcup \{D_n : n \in \omega\}$.

NOTE: $A \cap B = \emptyset$ implies $(A \cup D) \cap (B \cup D') = \emptyset$.

A (1) > A (2) > A

LEMMA.

$$\{D_n : n < \omega\} \subset [X]^{\omega_1} \text{ be discrete, } a \subset \omega,$$
$$A = \bigcup_{n \in a} D_n \cup \bigcup_{n \in \omega \setminus a} D'_n \text{ and } B = \bigcup_{n \in a} D'_n \cup \bigcup_{n \in \omega \setminus a} D_n.$$
If $x \in S \setminus \overline{A}$ then there exists $D \in [X]^{\omega_1}$ discrete s.t. $x \in D'$ and
$$A \cap D' = \emptyset = B \cap D.$$

PROOF. By T_3 , x has an open nbhd U s.t. $\overline{U} \cap \overline{A} = \emptyset$. Then $\overline{U} \cap D'_n = \emptyset$, hence $|\overline{U} \cap D_n| \le \omega$ for all $n \in \omega$. Pick $E \in [U]^{\omega_1}$ discrete with $x \in E'$ and set $D = E \setminus \bigcup \{D_n : n \in \omega\}$.

NOTE: $A \cap B = \emptyset$ implies $(A \cup D) \cap (B \cup D') = \emptyset$.

LEMMA.

$$\{D_n : n < \omega\} \subset [X]^{\omega_1} \text{ be discrete, } a \subset \omega,$$
$$A = \bigcup_{n \in a} D_n \cup \bigcup_{n \in \omega \setminus a} D'_n \text{ and } B = \bigcup_{n \in a} D'_n \cup \bigcup_{n \in \omega \setminus a} D_n.$$
If $x \in S \setminus \overline{A}$ then there exists $D \in [X]^{\omega_1}$ discrete s.t. $x \in D'$ and
$$A \cap D' = \emptyset = B \cap D.$$

PROOF. By T_3 , x has an open nbhd U s.t. $\overline{U} \cap \overline{A} = \emptyset$. Then $\overline{U} \cap D'_n = \emptyset$, hence $|\overline{U} \cap D_n| \le \omega$ for all $n \in \omega$. Pick $E \in [U]^{\omega_1}$ discrete with $x \in E'$ and set $D = E \setminus \bigcup \{D_n : n \in \omega\}$.

NOTE: $A \cap B = \emptyset$ implies $(A \cup D) \cap (B \cup D') = \emptyset$.

LEMMA.

$$\{D_n : n < \omega\} \subset [X]^{\omega_1} \text{ be discrete, } a \subset \omega,$$
$$A = \bigcup_{n \in a} D_n \cup \bigcup_{n \in \omega \setminus a} D'_n \text{ and } B = \bigcup_{n \in a} D'_n \cup \bigcup_{n \in \omega \setminus a} D_n.$$
If $x \in S \setminus \overline{A}$ then there exists $D \in [X]^{\omega_1}$ discrete s.t. $x \in D'$ and
$$A \cap D' = \emptyset = B \cap D.$$

PROOF. By T_3 , x has an open nbhd U s.t. $\overline{U} \cap \overline{A} = \emptyset$. Then $\overline{U} \cap D'_n = \emptyset$, hence $|\overline{U} \cap D_n| \le \omega$ for all $n \in \omega$. Pick $E \in [U]^{\omega_1}$ discrete with $x \in E'$ and set $D = E \setminus \bigcup \{D_n : n \in \omega\}$.

NOTE: $A \cap B = \emptyset$ implies $(A \cup D) \cap (B \cup D') = \emptyset$.

Write $S = \{x_{\alpha} : \alpha < \omega_1\}$ and define discrete $D_{\alpha} \in [X]^{\omega_1}$ with $x_{\alpha} \in D'_{\alpha}$ and sets $a_{\alpha} \subset \alpha + 1$ for $\alpha < \omega_1$ s.t. $\beta < \alpha$ implies $a_{\beta} = a_{\alpha} \cap (\beta + 1)$:

- Choose discrete $D_0 \in [X]^{\omega_1}$ with $x_0 \in D'_0$ and set $a_0 = \{0\}$.
- For $\alpha > 0$ set $\mathbf{a}_{\alpha}^{-} = \bigcup \{ \mathbf{a}_{\beta} : \beta < \alpha \}$, moreover $A_{\alpha} = \bigcup \{ D_{\beta} : \beta \in \mathbf{a}_{\alpha}^{-} \} \cup \bigcup \{ D_{\beta}' : \beta \in \alpha \setminus \mathbf{a}_{\alpha}^{-} \}$,

 $B_{\alpha} = \bigcup \{ D_{\beta}' : \beta \in a_{\alpha}^{-} \} \cup \bigcup \{ D_{\beta} : \beta \in \alpha \setminus a_{\alpha}^{-} \}.$

- (i) If $x_{\alpha} \in \overline{A_{\alpha}} \cap \overline{B_{\alpha}}$ set $D_{\alpha} = D_0$ and $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^-$.
- (ii) If $x_{\alpha} \notin \overline{A_{\alpha}}$ use the Lemma to find D_{α} and set $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^{-}$.

(iii) If $x_{\alpha} \in \overline{A_{\alpha}} \setminus \overline{B_{\alpha}}$ use the Lemma again to find D_{α} and set $a_{\alpha} = a_{\alpha}^{-}$. By induction, $A_{\alpha} \cap B_{\alpha} = \emptyset$ for all $\alpha < \omega_{1}$, hence $A = \bigcup \{A_{\alpha} : \alpha < \omega_{1}\}$

3

Write $S = \{x_{\alpha} : \alpha < \omega_1\}$ and define discrete $D_{\alpha} \in [X]^{\omega_1}$ with $x_{\alpha} \in D'_{\alpha}$ and sets $a_{\alpha} \subset \alpha + 1$ for $\alpha < \omega_1$ s.t. $\beta < \alpha$ implies $a_{\beta} = a_{\alpha} \cap (\beta + 1)$:

- Choose discrete $D_0 \in [X]^{\omega_1}$ with $x_0 \in D_0'$ and set $a_0 = \{0\}.$
- For $\alpha > 0$ set $a_{\alpha}^{-} = \bigcup \{a_{\beta} : \beta < \alpha\}$, moreover

 $A_{lpha} = \bigcup \{ D_{eta} : eta \in a_{lpha}^{-} \} \cup \bigcup \{ D_{eta}' : eta \in lpha \setminus a_{lpha}^{-} \}$,

 $B_{\alpha} = \bigcup \{ D_{\beta}' : \beta \in a_{\alpha}^{-} \} \cup \bigcup \{ D_{\beta} : \beta \in \alpha \setminus a_{\alpha}^{-} \}.$

(i) If $x_{\alpha} \in \overline{A_{\alpha}} \cap \overline{B_{\alpha}}$ set $D_{\alpha} = D_0$ and $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^-$.

(ii) If $x_{\alpha} \notin \overline{A_{\alpha}}$ use the Lemma to find D_{α} and set $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^{-}$.

(iii) If $x_{\alpha} \in \overline{A_{\alpha}} \setminus \overline{B_{\alpha}}$ use the Lemma again to find D_{α} and set $a_{\alpha} = a_{\alpha}^{-}$.

By induction, $A_{\alpha} \cap B_{\alpha} = \emptyset$ for all $\alpha < \omega_1$, hence $A = \bigcup \{A_{\alpha} : \alpha < \omega_1\}$ and $B = \bigcup \{B_{\alpha} : \alpha < \omega_1\}$ are (two) disjoint dense sets in *X*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

Write $S = \{x_{\alpha} : \alpha < \omega_1\}$ and define discrete $D_{\alpha} \in [X]^{\omega_1}$ with $x_{\alpha} \in D'_{\alpha}$ and sets $a_{\alpha} \subset \alpha + 1$ for $\alpha < \omega_1$ s.t. $\beta < \alpha$ implies $a_{\beta} = a_{\alpha} \cap (\beta + 1)$:

– Choose discrete $D_0 \in [X]^{\omega_1}$ with $x_0 \in D'_0$ and set $a_0 = \{0\}$.

- For $\alpha > 0$ set $a_{\alpha}^{-} = \bigcup \{a_{\beta} : \beta < \alpha\}$, moreover $A_{\alpha} = \bigcup \{D_{\beta} : \beta \in a_{\alpha}^{-}\} \cup \bigcup \{D_{\beta}' : \beta \in \alpha \setminus a_{\alpha}^{-}\},$

 $B_{\alpha} = \bigcup \{ D_{\beta}' : \beta \in a_{\alpha}^{-} \} \cup \bigcup \{ D_{\beta} : \beta \in \alpha \setminus a_{\alpha}^{-} \}.$

(i) If $x_{\alpha} \in \overline{A_{\alpha}} \cap \overline{B_{\alpha}}$ set $D_{\alpha} = D_0$ and $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^-$.

(ii) If $x_{\alpha} \notin \overline{A_{\alpha}}$ use the Lemma to find D_{α} and set $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^{-}$.

(iii) If $x_{\alpha} \in \overline{A_{\alpha}} \setminus \overline{B_{\alpha}}$ use the Lemma again to find D_{α} and set $a_{\alpha} = a_{\alpha}^{-}$.

and $B = \bigcup \{B_{\alpha} : \alpha < \omega_1\}$ are (two) disjoint dense sets in *X*.

イロト 不得 トイヨト イヨト 二日

Write $S = \{x_{\alpha} : \alpha < \omega_1\}$ and define discrete $D_{\alpha} \in [X]^{\omega_1}$ with $x_{\alpha} \in D'_{\alpha}$ and sets $a_{\alpha} \subset \alpha + 1$ for $\alpha < \omega_1$ s.t. $\beta < \alpha$ implies $a_{\beta} = a_{\alpha} \cap (\beta + 1)$:

- Choose discrete $D_0 \in [X]^{\omega_1}$ with $x_0 \in D'_0$ and set $a_0 = \{0\}$.
- For $\alpha > 0$ set $\mathbf{a}_{\alpha}^{-} = \bigcup \{ \mathbf{a}_{\beta} : \beta < \alpha \}$, moreover

 $\mathbf{A}_{\alpha} = \bigcup \{ \mathbf{D}_{\beta} : \beta \in \mathbf{a}_{\alpha}^{-} \} \cup \bigcup \{ \mathbf{D}_{\beta}' : \beta \in \alpha \setminus \mathbf{a}_{\alpha}^{-} \},\$

 $\mathbf{B}_{\alpha} = \bigcup \{ \mathbf{D}_{\beta}' : \beta \in \mathbf{a}_{\alpha}^{-} \} \cup \bigcup \{ \mathbf{D}_{\beta} : \beta \in \alpha \setminus \mathbf{a}_{\alpha}^{-} \}.$

(i) If $x_{\alpha} \in \overline{A_{\alpha}} \cap \overline{B_{\alpha}}$ set $D_{\alpha} = D_0$ and $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^-$.

(ii) If $x_{\alpha} \notin \overline{A_{\alpha}}$ use the Lemma to find D_{α} and set $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^{-}$.

(iii) If $x_{\alpha} \in \overline{A_{\alpha}} \setminus \overline{B_{\alpha}}$ use the Lemma again to find D_{α} and set $a_{\alpha} = a_{\alpha}^{-}$.

By induction, $A_{\alpha} \cap B_{\alpha} = \emptyset$ for all $\alpha < \omega_1$, hence $A = \bigcup \{A_{\alpha} : \alpha < \omega_1\}$ and $B = \bigcup \{B_{\alpha} : \alpha < \omega_1\}$ are (two) disjoint dense sets in *X*.

Write $S = \{x_{\alpha} : \alpha < \omega_1\}$ and define discrete $D_{\alpha} \in [X]^{\omega_1}$ with $x_{\alpha} \in D'_{\alpha}$ and sets $a_{\alpha} \subset \alpha + 1$ for $\alpha < \omega_1$ s.t. $\beta < \alpha$ implies $a_{\beta} = a_{\alpha} \cap (\beta + 1)$:

- Choose discrete $D_0 \in [X]^{\omega_1}$ with $x_0 \in D'_0$ and set $a_0 = \{0\}$.
- For $\alpha > 0$ set $\mathbf{a}_{\alpha}^{-} = \bigcup \{ \mathbf{a}_{\beta} : \beta < \alpha \}$, moreover

 $\mathbf{A}_{\alpha} = \bigcup \{ \mathbf{D}_{\beta} : \beta \in \mathbf{a}_{\alpha}^{-} \} \cup \bigcup \{ \mathbf{D}_{\beta}' : \beta \in \alpha \setminus \mathbf{a}_{\alpha}^{-} \},\$

 $B_{\alpha} = \bigcup \{ D_{\beta}' : \beta \in a_{\alpha}^{-} \} \cup \bigcup \{ D_{\beta} : \beta \in \alpha \setminus a_{\alpha}^{-} \}.$

(i) If $x_{\alpha} \in \overline{A_{\alpha}} \cap \overline{B_{\alpha}}$ set $D_{\alpha} = D_0$ and $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^-$.

(ii) If $x_{\alpha} \notin \overline{A_{\alpha}}$ use the Lemma to find D_{α} and set $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^{-}$. (iii) If $x_{\alpha} \in \overline{A_{\alpha}} \setminus \overline{B_{\alpha}}$ use the Lemma again to find D_{α} and set $a_{\alpha} = a_{\alpha}^{-}$. By induction, $A_{\alpha} \cap B_{\alpha} = \emptyset$ for all $\alpha < \omega_{1}$, hence $A = \bigcup \{A_{\alpha} : \alpha < \omega_{1}\}$ and $B = \bigcup \{B_{\alpha} : \alpha < \omega_{1}\}$ are (two) disjoint dense sets in *X*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー

Write $S = \{x_{\alpha} : \alpha < \omega_1\}$ and define discrete $D_{\alpha} \in [X]^{\omega_1}$ with $x_{\alpha} \in D'_{\alpha}$ and sets $a_{\alpha} \subset \alpha + 1$ for $\alpha < \omega_1$ s.t. $\beta < \alpha$ implies $a_{\beta} = a_{\alpha} \cap (\beta + 1)$:

- Choose discrete $D_0 \in [X]^{\omega_1}$ with $x_0 \in D'_0$ and set $a_0 = \{0\}$.
- For $\alpha > 0$ set $\mathbf{a}_{\alpha}^{-} = \bigcup \{ \mathbf{a}_{\beta} : \beta < \alpha \}$, moreover

 $\mathbf{A}_{\alpha} = \bigcup \{ \mathbf{D}_{\beta} : \beta \in \mathbf{a}_{\alpha}^{-} \} \cup \bigcup \{ \mathbf{D}_{\beta}' : \beta \in \alpha \setminus \mathbf{a}_{\alpha}^{-} \},\$

 $B_{\alpha} = \bigcup \{ D_{\beta}' : \beta \in a_{\alpha}^{-} \} \cup \bigcup \{ D_{\beta} : \beta \in \alpha \setminus a_{\alpha}^{-} \}.$

(i) If $x_{\alpha} \in \overline{A_{\alpha}} \cap \overline{B_{\alpha}}$ set $D_{\alpha} = D_0$ and $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^-$.

(ii) If $x_{\alpha} \notin \overline{A_{\alpha}}$ use the Lemma to find D_{α} and set $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^{-}$.

(iii) If $x_{\alpha} \in \overline{A_{\alpha}} \setminus \overline{B_{\alpha}}$ use the Lemma again to find D_{α} and set $a_{\alpha} = a_{\alpha}^{-}$. By induction, $A_{\alpha} \cap B_{\alpha} = \emptyset$ for all $\alpha < \omega_{1}$, hence $A = \bigcup \{A_{\alpha} : \alpha < \omega_{1}\}$ and $B = \bigcup \{B_{\alpha} : \alpha < \omega_{1}\}$ are (two) disjoint dense sets in *X*.

ヘロン 不通 とくほ とくほ とうほう

Write $S = \{x_{\alpha} : \alpha < \omega_1\}$ and define discrete $D_{\alpha} \in [X]^{\omega_1}$ with $x_{\alpha} \in D'_{\alpha}$ and sets $a_{\alpha} \subset \alpha + 1$ for $\alpha < \omega_1$ s.t. $\beta < \alpha$ implies $a_{\beta} = a_{\alpha} \cap (\beta + 1)$:

- Choose discrete $D_0 \in [X]^{\omega_1}$ with $x_0 \in D'_0$ and set $a_0 = \{0\}$.
- For $\alpha > 0$ set $\mathbf{a}_{\alpha}^{-} = \bigcup \{ \mathbf{a}_{\beta} : \beta < \alpha \}$, moreover

 $\mathbf{A}_{\alpha} = \bigcup \{ \mathbf{D}_{\beta} : \beta \in \mathbf{a}_{\alpha}^{-} \} \cup \bigcup \{ \mathbf{D}_{\beta}' : \beta \in \alpha \setminus \mathbf{a}_{\alpha}^{-} \},\$

 $B_{\alpha} = \bigcup \{ D_{\beta}' : \beta \in a_{\alpha}^{-} \} \cup \bigcup \{ D_{\beta} : \beta \in \alpha \setminus a_{\alpha}^{-} \}.$

- (i) If $x_{\alpha} \in \overline{A_{\alpha}} \cap \overline{B_{\alpha}}$ set $D_{\alpha} = D_0$ and $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^-$.
- (ii) If $x_{\alpha} \notin \overline{A_{\alpha}}$ use the Lemma to find D_{α} and set $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^{-}$.
- (iii) If $x_{\alpha} \in \overline{A_{\alpha}} \setminus \overline{B_{\alpha}}$ use the Lemma again to find D_{α} and set $a_{\alpha} = a_{\alpha}^{-}$.

By induction, $A_{\alpha} \cap B_{\alpha} = \emptyset$ for all $\alpha < \omega_1$, hence $A = \bigcup \{A_{\alpha} : \alpha < \omega_1\}$ and $B = \bigcup \{B_{\alpha} : \alpha < \omega_1\}$ are (two) disjoint dense sets in *X*.

ヘロン 不通 とくほ とくほ とうほう

Write $S = \{x_{\alpha} : \alpha < \omega_1\}$ and define discrete $D_{\alpha} \in [X]^{\omega_1}$ with $x_{\alpha} \in D'_{\alpha}$ and sets $a_{\alpha} \subset \alpha + 1$ for $\alpha < \omega_1$ s.t. $\beta < \alpha$ implies $a_{\beta} = a_{\alpha} \cap (\beta + 1)$:

- Choose discrete $D_0 \in [X]^{\omega_1}$ with $x_0 \in D'_0$ and set $a_0 = \{0\}$.
- For $\alpha > 0$ set $\mathbf{a}_{\alpha}^{-} = \bigcup \{ \mathbf{a}_{\beta} : \beta < \alpha \}$, moreover

 $\mathbf{A}_{\alpha} = \bigcup \{ \mathbf{D}_{\beta} : \beta \in \mathbf{a}_{\alpha}^{-} \} \cup \bigcup \{ \mathbf{D}_{\beta}' : \beta \in \alpha \setminus \mathbf{a}_{\alpha}^{-} \},\$

 $B_{\alpha} = \bigcup \{ D_{\beta}' : \beta \in a_{\alpha}^{-} \} \cup \bigcup \{ D_{\beta} : \beta \in \alpha \setminus a_{\alpha}^{-} \}.$

(i) If
$$x_{\alpha} \in \overline{A_{\alpha}} \cap \overline{B_{\alpha}}$$
 set $D_{\alpha} = D_0$ and $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^-$.

(ii) If $x_{\alpha} \notin \overline{A_{\alpha}}$ use the Lemma to find D_{α} and set $a_{\alpha} = \{\alpha\} \cup a_{\alpha}^{-}$.

(iii) If $x_{\alpha} \in \overline{A_{\alpha}} \setminus \overline{B_{\alpha}}$ use the Lemma again to find D_{α} and set $a_{\alpha} = a_{\alpha}^{-}$. By induction, $A_{\alpha} \cap B_{\alpha} = \emptyset$ for all $\alpha < \omega_{1}$, hence $A = \bigcup \{A_{\alpha} : \alpha < \omega_{1}\}$

and $B = \bigcup \{B_{\alpha} : \alpha < \omega_1\}$ are (two) disjoint dense sets in X.